If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-60x+108=0
a = 4; b = -60; c = +108;
Δ = b2-4ac
Δ = -602-4·4·108
Δ = 1872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1872}=\sqrt{144*13}=\sqrt{144}*\sqrt{13}=12\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-12\sqrt{13}}{2*4}=\frac{60-12\sqrt{13}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+12\sqrt{13}}{2*4}=\frac{60+12\sqrt{13}}{8} $
| 24=-p-7p | | 3x+5=3-9x | | 2x-18=62 | | 43,425+75x=45000-150x | | 6x-8=10x+28 | | 15=120/3b | | 2^3025=x | | (75x2.25)-60=210 | | 5n+2+3n=5 | | X-3=8x+6÷2 | | -;27+20w=73 | | P(x)=50x-15x-11 | | 1/4(x-32)=x-3/4x-16 | | (3/2)(4x-2)-3x=5-(x+2) | | 5(n−80)=10 | | 3x+6=4x-24+2x+7 | | -16.1x^2+20x+50=0 | | ((2(r-3))/4)-8=50 | | 16.1x^2+20x+50=0 | | 12=12+v−8212=12+2v−8 | | 7r−8=27 | | 3x^2+1=-14 | | 2/11m+16=4+6/22m | | 4c+40-146=12c+56 | | 2+10d=5d+17 | | -81+x=-41 | | 4(2x-6)=3x+6 | | d+8=85 | | 10x-12=6×+6 | | 42=18+x+(-1•4x) | | 29=c+5 | | 7x-3(7x-15)=-179 |